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What is network calculus?

a theory to compute memory and delay bounds in networks

based on the (min,+) dioid

used to certify A380 AFDX backbone

When to use it

multi-hop real-time communications

no simple analysis exists

no (or few) cyclic dependencies

no (or simple) feedback flow control

Network calculus benefits

Different accuracies

Scalable approach

5/50 M. Boyer NC: from theory to practice



What is network calculus?

a theory to compute memory and delay bounds in networks

based on the (min,+) dioid

used to certify A380 AFDX backbone

Why use it?

Because it is elegant

When to use it

multi-hop real-time communications

no simple analysis exists

no (or few) cyclic dependencies

no (or simple) feedback flow control

Network calculus benefits

Different accuracies

Scalable approach

5/50 M. Boyer NC: from theory to practice



What is network calculus?

a theory to compute memory and delay bounds in networks

based on the (min,+) dioid

used to certify A380 AFDX backbone

When to use it

multi-hop real-time communications

no simple analysis exists

no (or few) cyclic dependencies

no (or simple) feedback flow control

Network calculus benefits

Different accuracies

Scalable approach

5/50 M. Boyer NC: from theory to practice



What is network calculus?

a theory to compute memory and delay bounds in networks

based on the (min,+) dioid

used to certify A380 AFDX backbone

When to use it

multi-hop real-time communications

no simple analysis exists

no (or few) cyclic dependencies

no (or simple) feedback flow control

Network calculus benefits

Different accuracies

Scalable approach

5/50 M. Boyer NC: from theory to practice



Outline

Network calculus: theory
NC: what and why?
System modelling in network calculus
The (min,+) dioid(s)
From reality to contracts
From contracts to bounds
Aggregated and residual services

Links with other theory
Real-Time calculus
Event stream
Task scheduling
Comparison

Tools
NC/RTC tools

Accuracy in avionic applications

Conclusion

6/50 M. Boyer NC: from theory to practice



Basic object: cumulative function

1 32 4 5 6 7 8 91 32 4 5 6 7 8 9

time time

A A

Flow: Cumulative function A

A(t) : amount of data sent up to time t
Properties:

null at 0 (and before)
non decreasing

Discrete of fluid modeling
Better definition than instantaneous throughput ρ(t)

A(t) =

∫ t

0

ρ(x)dx (1)
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Basic object: server

SA D

1 32 4 5 7 8 96

cumulative

time

data amount

D

A

Simple input/output relation:

S ⊂ F0 ×F0

Departure “after” arrival

A
S−→ D =⇒ A ≥ D

Basic server model:

no loss of messages
infinite memory
no add (header, checksum, etc.)
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Performance criteria: delay and backlog

1 32 4 5 7 8 9

cumulative

time

data amount

D

A

t

b(A,D)

d(A,D, t)

d(A,D)

b(A,D, t)

b(A,D, t)
def
= D(t)− A(t) d(A,D, t)

def
= inf {τ ≥ 0 : A(t) ≤ D(t + τ)}

b(A,D)
def
= max

t≥0
{b(A,D, t)} d(A,D)

def
= max

t≥0
{d(A,D, t)}
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The (min,+,R) dioid

The dioid on values: (∧,+,R): a ∧ b = min(a, b)

associativity, commutativity, distributivity:
a + (b ∧ c) = (a + b) ∧ (a + c)
“looks like” (+,×,R)

The dioid on functions:

min-plus convolution (f ∗ g)(t)
def
= inf

0≤s≤t
{f (t − s) + g(s)}

min-plus deconvolution (f � g)(t)
def
= sup

s≥0
{f (t + s)− g(s)}

min-plus Kleene closure f ∗
def
= δ0 ∧ f ∧ (f ∗ f ) ∧ (f ∗ f ∗ f ) ∧ . . .
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Why contracts?

cumulative functions are real behaviours

unknown at design time
or too complex to handle

⇒ need to handle contracts

arrival curves: contracts on input traffic
service curves: contracts on service
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Arrival curve definition

A flow A has α as (maximal) arrival curve iff

∀t,∆ ∈ R≥0 : A(t + ∆)− A(t) ≤ α(∆)

⇐⇒
A ≤ A ∗ α

α(∆) upper bounds the amount of data send on any interval
of width ∆

minimal arrival curve also exist

A

t t + d

≤ α(d)
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How to define a service? Engineer point of view.

SA D

Constant service: R bits per second

First idea: D(t + ∆)− D(t) ≥ R∆
Only when there is some backlog
(∀x ∈ [t, t + ∆] : D(t) < A(t))

Generalisation to non constant: any β function

D(t + ∆)− D(t) ≥ β(∆)
on backlogged periods

⇒ minimal strict service
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How to define a service? Mathematician point of
view.

SA D

Use (∧,+) convolution (symmetry with arrival curve)

Must be linked with arrival curve (more arrival, more
departure, up to service capacity)

D ≥ A ∗ β

⇒ minimal simple service (or minimal min-plus service)
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Basic results

S , βA, α D

Assume a server S with minimal service β and arrival flow A with
arrival curve α, and departure D

Bound on delay:
d(A,D) ≤ d(α, β) (2)

Bound on memory usage

b(A,D) ≤ b(α, β) (3)

Arrival curve of departure D

(α� β) (4)
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Pay burst only once principle

SA S ′ C
B

Pay burst only once

The sequence S , S ′ can be replaced by a virtual server S ;S ′ with
service curve β ∗ β′.

Interest End-to-end delay is less than sum of individual delays.

h(α, β ∗ β′) ≤ h(α, β) + h(α, β′) (5)

Proof: R ′′ ≥ R ′ ∗ β ≥ (R ∗ β) ∗ β′ = R ∗ (β ∗ β′)

Rq: In [20], more than 7 pages are required to prove limited
version of this result.
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Shared service

S

A1 D1

A2 D2

A1 ≥ D1

A2 ≥ D2

Service repartition still depends on

server policy (FIFO, Static Priority...)

individual flow contracts
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Point of view on flow aggregation

Consider two flows A1, A2 of arrival curves α1, α2.

A1 + A2 is an arrival curve, i.e. a non-decreasing function
R≥0 → {R}
(A1 + A2)(t) is the amount of data set by both flows up to
time t

α1 + α2 is an arrival curve for A1 + A2

not the best one

A1 = ν2,1, α1 = A1, A2(t) = A1(t − 1), α2 = α1

A1

A2

A1 + A2

α1 + α2
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Aggregated service

S

A1 D1

A2 D2

SA1 + A2 D1 + D2

A1 ≥ D1

A2 ≥ D2

(D1 + D2) ≥ (A1 + A2) ∗ β

Service repartition depends on

server policy (FIFO, Static Priority...)

individual flow contracts
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Challenge: residual service

S , β
D1
D2

A1, α1
A2, α2

S1, β1A1, α1 D1

reduction

A1 ≥ D1 D1 ≥ A1 ∗ β1

A2 ≥ D2 D2 ≥ A2 ∗ β2

How to compute β1, β2?
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Per policy residual service

Residual service must be defined for every scheduling policy

Static priority: βM = [β − αH − lmax
L ]+↑

FIFO: ∀θ ∈ R≥0 : βi = [β − αj ∗ δθ]+↑ ∧ δθ
GPS [17, 1]

WFQ [11, 16]

DRR [21, 6]

AVB [18, 19]

TDMA [10]

EDF [15]

The result may depend on the kind of service (simple, strict)...
The function [f ]+↑ is the non-negative, non-decreasing closure of f .
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Combining scheduling policies

Hierarchical scheduling

A residual service is still a service

Can be used to combine scheduling policies

SP/FIFO (AFDX)
SP/DRR/FIFO
DRR/EDF
...

Some restriction on the kind of service may exist

Heterogeneous network

different scheduling policies may be used in a network/system

from NC point of view, they all are service
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Real-Time calculus

The same model, with another name [2]

different presentation

more focus on minimal arrival curves

time domain: R vs. R≥0
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Event stream: the trade-of between NC/RTC and
scheduling

Philosophy [12]

“Furthermore, the new models [ie NC/RTC] are far less intuitive
than the ones known from the classical real-time systems research,
e. g. the model of rate-monotonic scheduling with its periodic
tasks and worst-case execution times. A system-level analysis
should be simple and comprehensible, otherwise its acceptance is
extremely doubtful.”
“We don’t necessarily need to develop new local analysis
techniques if we can benefit from the host of work in real-time
scheduling analysis.”
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Event stream model

count events, not amount of data

is workload related to frame sizes?

event stream 〈η+, η−, δ+, δ−〉
η+, η− maximal/minimal amount of events per interval
δ+/δ− maximal/minimal distance between events

event models: sub-classes of event streams

no formal model of stream transformation

re-use of scheduling results
assume periodic-based model
propagation: jitter propagation + ad-hoc enhancements
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Task scheduling

A large research area:

Main model: periodic task (+offsets, + dependencies, +...)

Main problem: local schedulability

Differences with network analyses:

propagation: output of a system is input of another

shaping: maximal throughput =⇒ maximal input
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Comparison

Three basic objects

system behaviour

bounds on behaviours

“computer friendly” sub-classes

Not all do clear distinction between these objects.
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NC/RTC tools

Two main components:

a library to handle curves (sum, minimum, convolution, etc.)

a network analyser

DISCO: NC analyser, in Java, Licence LGPL
http://disco.informatik.uni-kl.de/index.php/projects/

disco-dnc

curves library and network analyser

Real-Time Calculus (RTC) Toolbox
http://www.mpa.ethz.ch/Rtctoolbox

Curve Library: Java implementation (no source code) +
matlab interface
Network analyser: Modular Performance Analysis (MPA),
Matlab code

RTaW-PEGASE
http://www.realtimeatwork.com/software/rtaw-pegase

commercial Java tool
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Accuracy is “good enough”

Experiment on realistic configuration [5]:

8 switches

104 end-systems

6500 VL

Computation time:

Fast algorithm (ICC): 1s

Accurate algorithm (UPP): 10s

Method accuracy:

All Virtual Links 20% of VLs with highest WCTT
ICC UPP ICC UPP

Min 3.74% 0% 15.2% 3.55%

Av. 31.02% 16.44% 42.08% 25.37%

Max. 82.4% 76.06% 81.53% 76.08%
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Plotting accuracy 

 

 
Figure 3: Upper bounds on the worst-case traversal times (WCTT in us) with the 3 methods 

under study (ICC/ShST/UPP) shown together with a lower bound on the WCTT. Virtual Links are 

sorted by increasing delay computed with UPP3.  

4.3  Methods comparison on mult iple configurations 

Table 2 indicates the mean computation time for each method as implemented in RTaW-Pegase. 

The mean computing time per configuration with ICC is 1s, which is very fast for several 

thousands of virtual-links. This approach is thus well suited for design space exploration where 

numerous design choices are considered.  The mean computing time per configuration with ShSt 

is 1.5s, which is still very fast given the size of the systems. With UPP, the order of magnitude of 

the computing time per configuration is 10s. This is still good given the better accuracy of the 

approach. However, it should be noted that when virtual links may have different priorities, for 

systems having the same size, the computing time become important (typically 20-30mn). 

 

ICC ShSt UPP 

1s 1.4s 10s 

 Table 2: Mean computing time per configuration.  

 

 

Table 3 reports the gain of the UPP method versus ICC and ShSt. Table 4 gives a bound on the 

pessimism of each method. The statistics have been made on the 637362 virtual links of the 100 

randomly generated configurations. As shown in Figure 3, the computing method makes a 

                                                           
3 The choice of UPP as the sorting parameter explains the regularity of the UPP curve and the irregular plotting of the 
others, but it is just a plotting effect, not related to the techniques themselves. 
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Conclusion

Lot of work done from [8, 9, 13], two reference books [14, 7]...

Toward smaller upper bound for avionic systems

either more information on system

or more complex analyse

but exact delay is NP-Hard [3, 4]

Next research topics:

formal correction proof (cf Stephan Merz, Oct. 2014)

other application domains

network on chip
from network to system
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Personal feeling

Main contributions of NC are

clear distinction between

real behaviour
bounds on behaviours (arrival/service curves)
computation-friendly sub-classes

formal definition of delay

new point of view on real-time

hierarchical scheduling

Drawbacks (improvement areas):

too many definitions of service

infimum based proofs, continuity problems
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